Universal Serial Bus
Mass Storage Class
Specification Overview

Revision 1.3
September 5, 2008
Change History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>October 22, 1998</td>
<td>Initial release</td>
</tr>
<tr>
<td>1.1</td>
<td>June 28, 2000</td>
<td>Update</td>
</tr>
<tr>
<td>1.2</td>
<td>June 23, 2003</td>
<td>Update list of specs, restrict CBI to full-speed floppies only</td>
</tr>
<tr>
<td>1.3</td>
<td>September 5, 2008</td>
<td>Summary of changes from Rev 1.2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated related documents & subclass references,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>added MSC-Lock & IEEE 1667 subclasses,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>added Vendor Specific subclass & protocol,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>updated protocol list, added section on Request Codes</td>
</tr>
</tbody>
</table>

USB Device Class Definition for Mass Storage Devices
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN
THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT
THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.
Contributors

Alex Afshar, Matsushita Semiconductor
Jim Blackson, Y-E Data, Inc
David Cho, Genesys Logic
Sean S. Cho, Genesys Logic
Johan Craeybeckk, PIMC/Philips
Martin Furuhjelm, Lexar Media
John Geldman, Lexar Media
Dave Gilbert, Cypress Semiconductor
Trenton Henry, SMSC
Masahiro Ito, Yamagata Fujitsu
David L. Jolley, Iomega Corporation
Masayuki Kitagawa, Alpha Peripherals
Steve Kolokowsky, Cypress Semiconductor
Pat LaVarre, Lexar Media
Shing F. Lin, Adaptec
David Luke, Cypress Semiconductor
Eric Luttmann, Cypress Semiconductor
Jan Matejica, PIMC/Philips
Nathan Obr, Microsoft Corporation
Hiromichi Oribe, Hagiwara Sys-Com Co.
Mike Poulsen, Iomega Corporation
James Quigley, Iomega Corporation
Darrell Redford, Iomega Corporation
Al Rickey, Phoenix Technologies
Bill Russell, Canon
Peter S'Heeren, PIMC/Philips
Jim Sandman, Iomega Corporation
Toyoko Shimizu, Y-E Data, Inc
Glen Slick, Microsoft Corporation
Bill Stanley, Adaptec
Curtis E. Stevens, Western Digital
Frits Vanderlinden, Sun Microsystems
Mark Williams, Microsoft Corporation
Yoni Shternhell, SanDisk
Table of Contents

1 Introduction ... 5
 1.1 Specification Relationships .. 5
 1.2 Purpose .. 5
 1.3 Terms and Abbreviations ... 5
 1.4 Related Documents ... 6

2 Subclass Code ... 7

3 Protocol Codes ... 8

4 Request Codes .. 9

List of Tables

Table 2.1 – SubClass Codes Mapped to Command Block Specifications .. 7
Table 3.1 – Mass Storage Transport Protocol ... 8
Table 4.1 – Mass Storage Request Codes .. 9
1 Introduction

This document gives an overview of the USB Mass Storage Class specifications. How mass storage devices behave on the USB bus is the subject of this and other USB Mass Storage Class specifications. In addition to this Overview specification, several other USB Mass Storage Class specifications are supported by the USB Mass Storage Class Working Group (CWG). The titles of these specifications are:

- USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport
- USB Mass Storage Class Bulk-Only (BBB) Transport
- USB Mass Storage Class UFI Command Specification
- USB Mass Storage Class Bootability Specification
- USB Mass Storage Class Compliance Test Specification
- USB Lockable Storage Devices Feature Specification (LSD FS)

The USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport specification is approved for use only with full-speed floppy disk drives. CBI shall not be used in high-speed capable devices, or in devices other than floppy disk drives. CBI shall not be used in devices that implement LSDFS. Usage of CBI for any new design is discouraged.

Note: The Compliance Test specifications are still under development, and are not yet publicly available.

1.1 Specification Relationships

This is a normative document for USB Mass Storage Class devices. If there is a code assignment conflict between this document and another USB document, then the assignments in this document override the other document.

The CBI and Bulk-Only transport protocol specifications are each intended to be stand-alone documents for the USB Mass Storage class, enabling development of a USB Mass Storage compliant device. A device manufacturer may choose to implement both CBI and Bulk-Only, but shall follow each specification as applicable.

Booting an operating system from a USB Mass Storage Class device requires no special considerations with regard to Mass Storage Class support. Either CBI or Bulk-Only devices may be bootable. Bootability may, however, require other considerations such as particular types of media formatting, etc. Such considerations are hardware- or operating system dependent, and are beyond the scope of the Mass Storage Class specifications.

1.2 Purpose

The purpose of this document is to provide an overview of all the specifications that describe how Mass Storage devices behave on the USB bus. Section 1.1 gives the rules for using the different USB Mass Storage class specifications.

Note that these rules can change. As other companies with different USB Mass Storage Class device projects in mind join the USB Mass Storage Class CWG, other specifications may be developed by the CWG and added to the set of specifications that fully describe how a Mass Storage Class device behaves on the USB bus. If and when that happens, the USB Mass Storage CWG will reconsider the rules specified in section 1.1 of this document.

1.3 Terms and Abbreviations

May
A keyword that indicates an option.

Shall
A keyword that indicates a requirement.
1.4 Related Documents

USB Mass Storage specifications use the command sets from several existing protocols. The command blocks of these command sets are placed in a USB wrapper which follows USB protocol. The following specifications are referenced by the USB Mass Storage specifications:

- **SCSI Primary Commands – 2 (SPC-2), Revision 3 or later**, available from Global Engineering, (800)-854-7179
2 Subclass Code

The Interface Descriptor of a USB Mass Storage Class device includes a `bInterfaceSubClass` field. This field denotes the industry-standard command set transported by a Mass Storage Class interface. The value of the `bInterfaceSubClass` field shall be set to one of the Subclass codes as shown in the following table.

Note that the Subclass code values used in the `bInterfaceSubClass` field specify the industry-standard specification that defines transport command sets transported by the interface; these Subclass codes do not specify a type of storage device (such as a CD-ROM or floppy disk drive).

<table>
<thead>
<tr>
<th>SubClass Code</th>
<th>Command Block Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>SCSI command set not reported</td>
<td>De facto use</td>
</tr>
<tr>
<td>01h</td>
<td>Reduced Block Commands (RBC) T10 Project 1240-D</td>
<td>Defined outside of USB</td>
</tr>
<tr>
<td>02h</td>
<td>MMC-5 (ATAPI)</td>
<td>Defined outside of USB</td>
</tr>
<tr>
<td>03h</td>
<td>Obsolete</td>
<td>Was SFF-8070i</td>
</tr>
<tr>
<td>04h</td>
<td>USB Floppy Interface (UFI)</td>
<td>Specifies how to interface Floppy Disk Drives to USB.</td>
</tr>
<tr>
<td>05h</td>
<td>Obsolete</td>
<td>Was QIC-157</td>
</tr>
<tr>
<td>06h</td>
<td>SCSI transparent command set</td>
<td>Defined outside of USB</td>
</tr>
<tr>
<td>07h</td>
<td>Lockable Mass Storage</td>
<td>LSDFS specifies how host has to negotiate access before trying SCSI</td>
</tr>
<tr>
<td>08h</td>
<td>IEEE 1667</td>
<td>Defined outside of USB</td>
</tr>
<tr>
<td>09h - FEh</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>FFh</td>
<td>Specific to device vendor</td>
<td>De facto use</td>
</tr>
</tbody>
</table>
3 Protocol Codes

The Interface Descriptor of a USB Mass Storage Class device includes a `bInterfaceProtocol` field. This field denotes the transport protocol used by this interface.

<table>
<thead>
<tr>
<th><code>bInterfaceProtocol</code></th>
<th>Protocol Implementation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Control/Bulk/Interrupt protocol (with command completion interrupt)</td>
<td>USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport</td>
</tr>
<tr>
<td>01h</td>
<td>Control/Bulk/Interrupt protocol (with no command completion interrupt)</td>
<td>USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport</td>
</tr>
<tr>
<td>02h</td>
<td>Obsolete</td>
<td></td>
</tr>
<tr>
<td>03h – 4Fh</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>50h</td>
<td>Bulk-Only Transport (BBB)</td>
<td>USB Mass Storage Class Bulk-Only Transport</td>
</tr>
<tr>
<td>51h – FFh</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>FFh</td>
<td>Specific to device vendor</td>
<td>De facto use</td>
</tr>
</tbody>
</table>

The USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport specification (Protocol codes 0x00 and 0x01) is approved for use only with full-speed floppy disk drives. CBI shall not be used in high-speed capable devices, or in devices other than floppy disk drives. Usage of CBI for any new design is discouraged.
4 Request Codes

Core USB specifies that a USB control Request addressed to wIndex = bInterfaceNumber of a USB Mass Storage Class device interface includes a bRequest field.

The meaning of the bRequest code is specific to the device vendor when the bmRequestType.Type is Vendor, but the meaning of the bRequest code is specific to the interface class when the bmRequestType.Type is Class.

<table>
<thead>
<tr>
<th>bRequest</th>
<th>Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Accept Device-Specific Command (ADSC)</td>
<td>Assigned in context by USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport, also aliases core USB request 00h Get Status.</td>
</tr>
<tr>
<td>01h – 0Dh</td>
<td>Reserved</td>
<td>Aliases of core USB bRequest codes</td>
</tr>
<tr>
<td>0Eh – FBh</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>FCh</td>
<td>Get Requests</td>
<td>Assigned by Lockable Storage Devices Feature Specification</td>
</tr>
<tr>
<td>FDh</td>
<td>Put Requests</td>
<td>Assigned by Lockable Storage Devices Feature Specification</td>
</tr>
<tr>
<td>FEh</td>
<td>Get Max LUN (GML)</td>
<td>Assigned by USB Mass Storage Class Bulk-Only (BBB) Transport</td>
</tr>
<tr>
<td>FFh</td>
<td>Bulk-Only Mass Storage Reset (BOMSR)</td>
<td>Assigned by USB Mass Storage Class Bulk-Only (BBB) Transport</td>
</tr>
</tbody>
</table>

The Mass Storage working group chose these bRequest codes with care. The first few codes assigned for the BBB transport do not alias the first few codes assigned for core USB requests because the working group counted down from FFh to choose new codes to recommend to USB-IF.