

AMD A45/A50M/A55E
Fusion Controller Hub

BIOS Developer’s Guide

Technical Reference Manual
Rev. 3.00

PN: 47780_A45_A50M_A55E_bdg_pub_3.00

 2012 Advanced Micro Devices, Inc.

Trademarks

AMD, the AMD Arrow logo, Agesa, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication
and reserves the right to make changes to specifications and product descriptions at any time without notice. AMD
assumes no liability whatsoever, and disclaims any express or implied warranty, relating to this document including, but
not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual
property right. AMD shall not be liable for any damage, loss, expense, or claim of loss of any kind or character (including
without limitation direct, indirect, consequential, exemplary, punitive, special, incidental or reliance damages) arising from
use of or reliance on this document. No license, whether express, implied, arising by estoppel, or otherwise, to any
intellectual property rights are granted by this publication. Except for AMD product purchased pursuant to AMD's
Standard Terms and Conditions of Sale, and then only as expressly set forth therein, AMD's products are not designed,
intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other application in which the failure of AMD's product
could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD
reserves the right to discontinue or make changes to its products at any time without notice.

Revision History
.

Date Rev. Description

April, 2012 3.00 • Becomes a public release.
• Updated section 3.2.1.1 Special Locked Area in CMOS.
• Fixed typo in section 3.6 System Restart after Power Fail,

where register 74h is corrected to 5Bh.

May, 2011 2.02 • Changed cover title – Replaced code name with marketing
names.

• Added marketing names to the Hudson-1 family members
in the Introduction.

February, 2011 2.01 • Added new Section 9 CIR Support.
• Added new section 10 SMI Programming.

November, 2010 2.00 • Added Hudson-E1 to the document.
• Updated section 8 A-Link Bridge with the proper addresses

for abRegBAR, AB_INDX, and AB_DATA.

June, 2010 1.01 • Updated Figure 1.
• Corrected typos 22h to 16h in Section 2.1 PCI Devices and

Functions.
• Added section 2.3.1 MMIO Programming for Legacy

Devices.
• Updated section 3.6 System Restart after Power Fail.
• Added new section 3.6.1 Power Fail and Alarm Setup.

Jan, 2010 1.00 First release.

©2012 Advanced Micro Devices, Inc. Table of Contents

AMD A45/A50M/A55E BIOS Developer’s Guide Page 4

 Table of Contents
1 Introduction ... 6

1.1 About this Manual ... 6
1.2 Block Diagram .. 7
1.3 Internal PCI Devices... 8

2 Hudson-1 Programming Architecture .. 9
2.1 PCI Devices and Functions .. 9
2.2 I/O Map ... 10

2.2.1 Fixed I/O Address Ranges ... 10
2.2.1.1 Fixed I/O Address Ranges – Hudson-1 Proprietary Ports .. 10

2.2.2 Variable I/O Decode Ranges.. 10
2.3 Memory Map .. 11

2.3.1 MMIO Programming for Legacy Devices ... 11

3 Hudson-1 Early-POST Initialization.. 16
3.1 512K/1M ROM Enable ... 16

3.1.1 PCI ROM .. 16
3.1.2 LPC ROM ... 16
3.1.3 LPC ROM Read/Write Protect .. 16
3.1.4 SPI ROM Controller ... 17

3.2 Real Time Clock (RTC) .. 18
3.2.1 RTC Access ... 18

3.2.1.1 Special Locked Area in CMOS .. 18
3.2.1.2 Century Byte ... 18
3.2.1.3 Date Alarm .. 18

3.3 BIOS RAM .. 19
3.4 Serial IRQ ... 19
3.5 SubSystemID and SubSystem Vendor ID.. 20
3.6 System Restart after Power Fail .. 20

3.6.1 Power Fail and Alarm Setup... 21

4 PCI IRQ Routing .. 22
4.1 PCI IRQ Routing Registers .. 22
4.2 PCI IRQ BIOS Programming .. 23
4.3 Integrated PCI Devices IRQ Routing ... 24
4.4 PCI IRQ Routing for APIC Mode .. 24

5 SMBus Programming .. 25
5.1 SMBus Timing .. 25
5.2 SMBus Host Controller Programming .. 25

6 Serial ATA (SATA) ... 28
6.1 Device ID .. 30
6.2 SATA Controller Operating Modes ... 31

7 APIC Programming.. 32

©2012 Advanced Micro Devices, Inc. Table of Contents

AMD A45/A50M/A55E BIOS Developer’s Guide Page 5

7.1 Northbridge APIC Enable ... 32
7.2 FCH APIC Enable .. 32
7.3 IOAPIC Base Address .. 32
7.4 APIC IRQ Assignment .. 32
7.5 APIC IRQ Routing .. 32

8 UMI Bridge ... 34
8.1 Programming Procedure .. 35
8.2 UMI Configuration DMA Access ... 36
8.3 Enabling Non-Posted Memory Write .. 37

9 CIR Support ... 38
9.1 Southbridge CIR ... 38

9.1.1 Host and CIR Communication .. 38
9.1.2 Logical Device Number 5 Registers ... 38
9.1.3 Sample Code to Read and Write CIR Registers .. 41
9.1.4 Sample Code to Enable Tx0 and Program it as Push Pull Driver... 41
9.1.5 Sample ASL Code for CIR ... 42

10 SMI Programming .. 45
10.1 Workaround for SMI Command Port Status Byte .. 45

11 Legacy BIOS Implementation for Chipset Integration Module Extensive (Hudson-
1 CIMx).. 47

11.1 Introduction ... 47
11.2 CIMx Interface Calls Environment .. 47
11.3 Interface Definition ... 47

11.3.1 FCH Power-On/Reset Initialization ... 47
11.3.2 FCH BIOS POST Initialization .. 48
11.3.3 S3 Resume Initialization ... 48
11.3.4 Callback Interface Definition... 48

12 UEFI BIOS Implementation for Chipset Integration Module Extensive (Hudson-1
CIMx)... 49

12.1 Introduction ... 49
12.2 CIMx Interface Calls Environment .. 49

12.2.1 FCH PEI Module .. 49
12.2.2 FCH DXE Driver ... 50

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 6

1 Introduction

1.1 About this Manual

This manual provides guidelines for BIOS developers working with the AMD family of Fusion
Controller Hub (FCH) codenamed Hudson-1. It describes the BIOS and software modifications
required to fully support the Hudson-1 FCHs.

Note: The term Hudson-1 is used in this document to refer to the following Hudson-1 family
members:

Marketing Name Codename

A45 Hudson-D1

A50M Hudson-M1

A55E Hudson-E1

The information in this document applies to all members of the Hudson-1 family unless otherwise
indicated. Other documents on the Hudson-1 are available at the AMD NDA site.

To help the reader to readily identify changes/updates in this document, changes/updates over
the previous revision are highlighted in red.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 7

1.2 Block Diagram
This section contains a diagram for the Hudson-1. Figure 1 below shows the Hudson-1 internal PCI devices
and the major function blocks.

SATA
Controller

LPC
PCI Bridge SMBUS /ACPI

UMI Bridge

HD Audio

PORT 1 PORT 0

USB:OHCI(x4)

USB:EHCI(x3)

8250 TIMER

GPIO

BM

RTC

ACPI / HW
Monitor SMBUS

ROM

BUS Controler

APIC/ PIC
INTERRUPT

controller

SMI

SIRQ

PM SPEAKER

GEVENT, SLPBUTTON
TEMPDEAD, TEMPCAUT,

SHUTDOWN, SLP#,
CPUSTP#, PCISTP#,

STPCLK#, SMI#, SMIACT#

INTR
IGNNE#,
FERRB#,
INT# H:A

PWRGOOD

X
B

U
S

A-LINK

B-LINK

PICD[0]
RTC_IRQ#,

PIDE_INTRQ,
USB_IRQ#,

SATA_IRQ#,
AZ_IRQ#

X1/X2

14 USB2.0 + 2 USB1.1
PORTS

SERIRQ#

4 PCI slots

6 PORTS(GEN-III)

LPC bus

SPI bus

Debug port

B-Link A-Link

FC*
FC

Unified Media Interface (UMI)

PCIe®
(GEN 2)

Root Port (x4)

4 GPP ports

GbE MAC***

E-fuse

EC_INT

System
Clock Gen

25Mhz X1/X2

CPU CLK P/N

EXT GFX CLK P/N
GPP CLK P/N

NB DISP CLK P/N

USB CLK
SIO CLK

Core clks

FC clks

Usb clk

Sata clk

To Ethernet
PHY

Microcontroller

IDE
Controller

Notes:
* Flash controller function is not supported on Hudson-1 platforms.
** PCI controller function is not supported on Hudson-M1 platforms.
*** GbE MAC is not supported.

Figure 1 Hudson-1 PCI Internal Devices and Major Function Blocks

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 8

1.3 Internal PCI Devices
Note: The Hudson-1 internal PCI devices are listed in Figure 2 below. The sub-sections that follow provide
descriptions of the PCI configuration space, the I/O space, and the memory space registers for each device.
PCI configuration space registers are only accessible with configuration Read or configuration Write cycles
and with the target device selected by setting its corresponding IDSEL bit in the configuration cycle address
field.

LPC
PCI Bridge

Bus 0 DEV 20 Function 4
Device ID 4384h

SMBUS /ACPI
Bus 0 DEV 20 Function 0

UMI Bridge

HD Audio

PORT 1 PORT 0

USB:OHCI(x5)
Bus 0 DEV 19 Function 0:4
Device ID 4387h : 4388h :

4389h : 438Ah : 438Bh

USB:EHCI(x2)

A-LINK

B
-L

IN
K

12 USB2.0 + 2
USB1.1 PORTS

4 PCI SLOTS
LPC bus

SPI bus

Debug port

B-LINK A-LINK

UMI

IMC

8051

IMC_INT

Flash Controller

SATA Controller

IDE

HD Link

Bus 0 DEV 20 Function 1

Bus 0 DEV 20 Function 2

Bus 0 DEV 19 Function 0

Device ID 438Ch

Device ID 438Dh
Bus 0 DEV 20 Function 3

Device ID 4383h

Device ID 4385h

Device ID 4390h
Device ID 4391h
Device ID 4392h
Device ID 4393h

Figure 2: Hudson-1 PCI Internal Devices

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 9

2 Hudson-1 Programming Architecture

2.1 PCI Devices and Functions

Bus:Device:Function Function Description Dev ID Enable/Disable
Bus 0:Device 14h:Function 0 SMBus Controller 4385h Always enabled

Bus 0:Device 14h:Function 1 SATA (IDE) Controller 438Ch PM_Reg: 0xDA bit3

Bus 0:Device 14h:Function 2 Azalia Controller 4383h PM_Reg: 0xEB bit0

Bus 0:Device 14h:Function 3 LPC Controller 438Dh PM_Reg: 0xEC bit0

Bus 0:Device 14h:Function 4 PCIB Bridge 4384h Always enabled

Bus 0:Device 14h:Function 6 GEC Controller 1699h PM_Reg: 0xF6 bit0 cleared

Bus 0:Device 12h:Function 2
Bus 0:Device 13h:Function 2
Bus 0:Device 16h:Function 2

USB #1EHCI Controller
USB #2EHCI Controller
USB #3EHCI Controller

4396h
4396h
4396h

PM_Reg: 0xEF bit1, bit3, bit5

Bus 0:Device 12h:Function 0
Bus 0:Device 13h:Function 0
Bus 0:Device 14h:Function 5
Bus 0:Device 16h:Function 0

USB #1 OHCI Controller
USB #2 OHCI Controller
USB #4 OHCI Controller
USB #3 OHCI Controller

4397h
4397h
438Bh
4397h

PM_Reg: 0xEF bit 0, bit 2, bit 4,
bit 6

Bus 0:Device 11h:Function 0 Native/Legacy IDE Mode
AHCI Mode
Non-Raid-5 Mode
Raid5 Mode

4390h
4391h
4392h
4393h

PM_Reg: 0xDA bit0

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 10

2.2 I/O Map

The I/O map is divided into Fixed and Variable address ranges. Fixed ranges cannot be moved,
but can be disabled in some cases. Variable ranges are configurable.

2.2.1 Fixed I/O Address Ranges

2.2.1.1 Fixed I/O Address Ranges – Hudson-1 Proprietary Ports

I/O Address Description Enable Bit
C00h-C01h IRQ Routing Index/Data register PM_Reg: 0x00 [1]

C14h PCI Error Control register PM_Reg: 0x00 [20]

C50h-C51h Client Management Index /Data
registers

PM_Reg: 0x00 [27]

C52h Gpm Port PM_Reg: 0x00 [22]

C6Fh Flash Rom Program Enable PM_Reg: 0x00 [24]

CD0h-CD1h PM2 Index/Data Always enable

CD4h-CD5h BIOS RAM Index/Data PM_Reg: 0x20 [0] (Default enabled)

CD6h-CD7h Power Management I/O register PM_Reg: 0x00 [25]

2.2.2 Variable I/O Decode Ranges

I/O Name Description Configure Register Range Size
(Bytes)

PM1_EVT ACPI PM1a_EVT_BLK PM_Reg: 0x60 & 0x61 4

PM1_CNT ACPI PM1a_CNT_BLK PM_Reg: 0x62 & 0x63 2

PM_TMR ACPI PM_TMR_BLK PM_Reg: 0x64 & 0x65 4

P_BLK ACPI P_BLK PM_Reg: 0x66 & 0x66 6

GPE0_EVT ACPI GPE0_EVT_BLK PM_Reg: 0x68 & 0x67 8

SMI CMD Block * SMI Command Block PM_Reg: 0x6A & 0x6B 2

Pma Cnt Block PMa Control Block PM_Reg: 0x6E & 0x6F 1

SMBus SMBus IO Space PM_Reg: 0x2C & 0x2D 16

Note:

• The SMI CMD block must be defined on the 16-bit boundary, i.e., the least significant
nibble of the address must be zero (for example, B0h, C0h, etc.)

• The SMI CMD block consists of two ports – the SMI Command port at base address,
and the SMI Status port at base address+1.

• The writes to SMI Status port will not generate an SMI. The writes to the SMI
Command port will generate an SMI.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 11

• The SMI Command and SMI Status ports may be written individually as 8-bit ports, or
together as a 16-bit port.

2.3 Memory Map

Memory Range Description Enable Bit

0000 0000h-000D FFFFh
0010 0000h-TOM

Main System Memory

000E 0000h-000F FFFFh Either PCI ROM or LPC
ROM

PCI ROM: Enabled by ROM strap only,
no register to program.
LPC ROM: LPC_Reg: 0x68 & LPC_Rom
strap

FEC0 0000h-FEC0 00EFh IOAPIC
FEC0 00F0h-FEC0 00F4h Watch Dog Timer Base

Address
* Recommended

PM_Reg: 0x48[0]

FED1 0000h-FED1 0100h BIOS RAM base
address
* Recommended

PM_Reg: 0x20[0]

FED4 0000h-FED4 3FFFh TPM Depends on configuration
FED6 1000h-FED6 1100h GEC SHADOW ROM LPC Reg9Ch [0]
FED8 0000h-FED8 0EFF Acpi MMIO address

 * Recommend
PM_Reg: 0x24[0]

FFC0 0000h-FFC7 FFFFh
FF80 0000h-FF87 FFFFh

FWH LPC Reg: 0x70[3:0]

FFC8 0000h-FFCF FFFFh
FF88 0000h-FF8F FFFFh

FWH LPC Reg: 0x70[7:4]

FFD0 0000h-FFD7 FFFFh
FF90 0000h-FF97 FFFFh

FWH LPC Reg: 0x70[11:8]

FFD8 0000h-FFDF FFFFh
FF98 0000h-FF9F FFFFh

FWH LPC Reg: 0x70[15:12]

FFE0 0000h-FFE7 FFFFh
FFA0 0000h-FFA7 FFFFh

FWH LPC Reg: 0x70 [19:16]

FFE8 0000h-FFEF FFFFh
FFA8 0000h-FFAF FFFFh

FWH LPC Reg: 0x70[23:20]

FFF0 0000h-FFF7 FFFFh
FFB0 0000h-FFB7 FFFFh

FWH LPC Reg: 0x70[27:24]

FFF8 0000h-FFFF FFFFh
FFB8 0000h-FFBF FFFFh

FWH LPC Reg: 0x70[31:28]

2.3.1 MMIO Programming for Legacy Devices

The Hudson-1 legacy devices LPC, IOAPIC, ACPI, TPM and Watchdog Timer require the base
address of the Memory Mapped I/O registers to be assigned before these logic blocks are
accessed. The Memory Mapped I/O register base address and its entire range should be mapped
to non-posted memory region by programming the CPU register.

Below is a sample code for FCH MMIO Range calculation in System BIOS.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 12

#include "SbPlatform.h"

//
// Declaration of local functions
//

typedef struct _OPTIMUM_FCH_MMIO_STRUCT {
 UINT16 Range0Base;
 UINT16 Range0Limit;
 UINT16 Range1Base;
 UINT16 Range1Limit;
 UINT16 Range2Base;
 UINT16 Range2Limit;
} OPTIMUM_FCH_MMIO_STRUCT;

/**
 * The FCH MMIO non-POST Range
 */
typedef struct _MMIO_RANGE_STRUCT {
 UINT16 Lpc0Base;
 UINT16 Lpc0Limit;
 UINT16 Lpc1Base;
 UINT16 Lpc1Limit;
 UINT16 SpiBase;
 UINT16 SpiLimit;
 UINT16 TmpBase;
 UINT16 TmpLimit;
 UINT16 HpetBase;
 UINT16 HpetLimit;
 UINT16 BiosRamBase;
 UINT16 BiosRamLimit;
 UINT16 WatchDogBase;
 UINT16 WatchDogLimit;
 UINT16 IoapicBase;
 UINT16 IoapicLimit;
 UINT16 AcpiMmioBase;
 UINT16 AcpiMmioLimit;
} MMIO_RANGE_STRUCT;

//

// Declaration of local functions

//

VOID fchMmioRangeCalculation (IN AMDSBCFG* pConfig, OUT OPTIMUM_FCH_MMIO_STRUCT* TempRange);

/**

 * fchMmioRangeCalculation - Calculatw FCH none-POST Mmio resource

 *

 *

 * - Private function

 *

 * @param[in] pConfig - FCH configuration structure pointer.

 * @param[out] CFGMmioTableDescription - Optimum range for non-POST FCH MMIO range for IBV

 *

 */

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 13

VOID

fchMmioRangeCalculation (

 IN AMDSBCFG* pConfig,

 OUT OPTIMUM_FCH_MMIO_STRUCT* TempRange

)

{

 MMIO_RANGE_STRUCT fchTemp;

 UINT16 TempRange1BaseH;

 UINT16 TempRange1BaseL;

 UINT8 Rang2Flag;

 // Fill all FCH Mmio range

 // Lpc ROM 1 Base read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG68, AccWidthUint16, &fchTemp.Lpc0Base);

 // Lpc ROM 1 Limit read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG6A, AccWidthUint16, &fchTemp.Lpc0Limit);

 // Lpc ROM 2 Base read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG6C, AccWidthUint16, &fchTemp.Lpc1Base);

 // Lpc ROM 2 Limit read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG6E, AccWidthUint16, &fchTemp.Lpc1Limit);

 // Spi Base Address read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REGA0 + 2, AccWidthUint16, &fchTemp.SpiBase);

 // Spi base address limit is less then 64K

 // Tpm Base Address read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + 0x86, AccWidthUint16, &fchTemp.TmpBase);

 // Tpm Limit Address read from FCH

 ReadPCI ((LPC_BUS_DEV_FUN << 16) + 0x8A, AccWidthUint16, &fchTemp.TmpLimit);

 // HPET Base Address read from FCH

 ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50 + 2, AccWidthUint16, &fchTemp.HpetBase);

 // HPET base address limit is less then 64K

 // BIOS RAM base Address read from FCH

 ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG20 + 2, AccWidthUint16,

&fchTemp.BiosRamBase);

 // BIOS RAM address limit is less then 64K

 // WatchDog base address read from FCH

 ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG48 + 2, AccWidthUint16,

&fchTemp.WatchDogBase);

 // WatchDog address limit is less then 64K

 // IoApic base address read from FCH

 ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG34 + 2, AccWidthUint16, &fchTemp.IoapicBase);

 // IoApic address limit is less then 64K

 // ACPI Mmio base address read from FCH

 ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG24 + 2, AccWidthUint16,

&fchTemp.AcpiMmioBase);

 // ACPI Mmio address limit is less then 64K

 // Reserved Range0Base for LPC ROM location for CPU specific ROM cycle.

 // In CIMx usually set LPC ROM2 for LPC ROM base address

 TempRange->Range0Base = fchTemp.Lpc1Base;

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 14

 TempRange->Range0Limit = fchTemp.Lpc1Limit;

 // Intent all other filed (except LPC) combine to one big MMIO range.

 TempRange1BaseL = 0xFEC0; // FCH default value for Watchdoag base address (lowerest)

 TempRange1BaseH = 0xFED8; // FCH default value for ACPI MMIO base address (highest)

 TempRange->Range1Base = 0xFEC0;

 TempRange->Range1Limit = 0xFED8;

 TempRange->Range2Base = 0;

 TempRange->Range2Limit = 0;

 Rang2Flag = 0x00;

 if ((fchTemp.SpiBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.SpiBase)) {

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.SpiBase;

 TempRange->Range2Limit = fchTemp.SpiBase;

 }

 if ((fchTemp.TmpBase != 0) && (Rang2Flag != 1)) {

 if ((fchTemp.TmpBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.TmpBase)) {

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.TmpBase;

 TempRange->Range2Limit = fchTemp.TmpLimit;

 }

 }

 if ((fchTemp.HpetBase != 0) && (Rang2Flag != 1)) {

 if ((fchTemp.HpetBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.HpetBase)) {

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.HpetBase;

 TempRange->Range2Limit = fchTemp.HpetBase;

 }

 }

 if ((fchTemp.BiosRamBase != 0) && (Rang2Flag != 1)) {

 if ((fchTemp.BiosRamBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.BiosRamBase))

{

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.BiosRamBase;

 TempRange->Range2Limit = fchTemp.BiosRamBase;

 }

 }

 if ((fchTemp.WatchDogBase != 0) && (Rang2Flag != 1)) {

 if ((fchTemp.WatchDogBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.WatchDogBase))

{

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.WatchDogBase;

 TempRange->Range2Limit = fchTemp.WatchDogBase;

 }

 }

 if ((fchTemp.IoapicBase != 0) && (Rang2Flag != 1)) {

 if ((fchTemp.IoapicBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.IoapicBase)) {

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.IoapicBase;

 TempRange->Range2Limit = fchTemp.IoapicBase;

 }

 }

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 15

 if ((fchTemp.AcpiMmioBase != 0) && (Rang2Flag != 1)) {

 if ((fchTemp.AcpiMmioBase < TempRange1BaseL) || (TempRange1BaseH < fchTemp.AcpiMmioBase))

{

 Rang2Flag = 1;

 TempRange->Range2Base = fchTemp.AcpiMmioBase;

 TempRange->Range2Limit = fchTemp.AcpiMmioBase;

 }

 }

 if ((Rang2Flag != 1) && (fchTemp.Lpc0Base != 0)) {

 TempRange->Range2Base = fchTemp.Lpc0Base;

 TempRange->Range2Limit = fchTemp.Lpc0Limit;

 }

}

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 16

3 Hudson-1 Early-POST Initialization

The system BIOS must configure the Hudson-1 at the very beginning of POST. Some of the
settings will change depending on the OEM design, or on the newer revision chipset.

3.1 512K/1M ROM Enable

With a Hudson-1 design, there can be two possible ROM sources: PCI ROM and LPC ROM. Two
pin straps (UseLpcRom, FWHDisable) determine where the ROM is (refer to the Hudson-1
databook). Upon system power on, the Hudson-1 enables 256K ROM by default. The BIOS
needs to enable 512K ROM or up to 1M for LPC ROM, if required.

3.1.1 PCI ROM

Control Bit Description
256K ROM

Setting
(Default)

512K ROM
Setting

PM_Reg: 0x04 [12] When set to 1, the address between
FFF80000h to FFFDFFFFh will be directed to
the PCI ROM interface.

0 1

PM_Reg: 0x04 [13] When set to 1, the address between 0E0000h
to 0EFFFFh will be directed to the PCI ROM
interface.

0 1

3.1.2 LPC ROM

To use the LPC ROM, the pin straps UseLpcRom, FWHDisable must be set accordingly.

Control Bit(s) Description Default 512K ROM
Setting

1M ROM
Setting

LPC PCI
Reg: 0x68

16-bit starting & end address of the
LPC ROM memory address range 1. 000E0000h 000E0000h 000E0000h

LPC PCI Reg:
0x6C

16-bit starting & end address of the
LPC ROM memory address range 2. FFFE0000h FFF80000h FFF00000h

LPC PCI Reg:
0x48 [4:3]

Enable bits for LPC ROM memory
address range 1 & 2.
Note: with pins straps set to LPC
ROM, these two bits have no effect
on Reg68 & Reg6C.

00b 11b 11b

3.1.3 LPC ROM Read/Write Protect

The Hudson-1 allows all or a portion of the LPC ROM addressed by the firmware hub to be read
protected, write protected, or both read and write protected. Four dword registers are provided to
select up to 4 LPC ROM ranges for read or write protection. The ROM protection range is defined
by the base address and the length. The base address is aligned at a 2K boundary and the
address length can be from 1K to 512K in increments of 1K.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 17

Register 50h, 54h, 58h, 5ch of Device 14h, Function 3

Field Name Bits Description
Base Address 31:11 ROM Base address. The most significant 21 bits of the base

address are defined in this field. Bits[10:0] of the base address are
assumed to be zero. Base address, therefore, is aligned at a 2K
boundary.

Length 10:2 These 9 bits (0-511) define the length from 1K to 512K in
increments of 1K.

Read Protect 1 When set, the memory range defined by this register is read-
protected. Reading any location in the range returns FFh.

Write Protect 0 When set, the memory range defined by this register is write-
protected. Writing to the range has no effect.

Example:

Protect 32K LPC ROM starting with base address FFF80000.

Base address bits 31:11 1111 1111 1111 1000 0000 0 b

Length 32K bit 10:2 = 31h = 000 0111 11 b

Read protect bit 1 = 1

Write protect bit 0 = 1

Register 50h = 1111 1111 1111 1000 0000 0000 0111 1111 b = FFF8007F h

Note:

1. Registers 50h ~ 5Fh can be written once after the hardware reset. Subsequent
writes to them have no effect.

2. Setting sections of the LPC ROM to either read or write protect will not allow the
ROM to be updated by a flash programming utility. Most flash utilities write and verify
ROM sectors, and will terminate programming if verification fails due to read protect.

3.1.4 SPI ROM Controller

The SPI ROM interface is a new feature added to the Hudson-1. Refer to the AMD Hudson-1
Register Reference Manual for more information on this feature. AMD will provide reference code
for this feature.

Note: The LPC ROM Read/Write Protect mentioned in the previous paragraph also applies to
SPI. Two strap pins, PCICLK0 and PCICLK1, determine the Hudson-1 boot up from LPC ROM or
SPI ROM. There is no register status to reflect whether the current ROM interface is LPC or SPI.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 18

3.2 Real Time Clock (RTC)

3.2.1 RTC Access

The internal RTC is divided into two sections: the clock and alarm functions (registers 0h to 0Dh),
and CMOS memory (registers 0Eh to FFh). The clock and alarm functions must be accessed
through I/O ports 70h/71h. The CMOS memory is accessed through I/O ports 72h/73h.

3.2.1.1 Special Locked Area in CMOS

Some CMOS memory locations may be disabled for read/write. PM_Reg: 0x56 defines the bits to
disable these CMOS memory locations. Once set, the area is protected. It can only be disabled
by cycling the system from S0 to G3 to S0 (RSM_RST# toggled) or by doing a system cold reset.
(SYS_Reset# toggled).

RtcControl - RW – 8 bits - [PM_Reg: 56h]

Field Name Bits Default Description
RTCProtect 0 0h When set, RTC RAM index 38h:3Fh will be locked from

read/write.
RTCProtect 1 0h When set, RTC RAM index F0h:FFh will be locked from

read/write.
RTCProtect 2 0h When set, RTC RAM index E0h:EFh will be locked from

read/write.
RTCProtect 3 0h When set, RTC RAM index D0h:DFh will be locked from

read/write.
RTCProtect 4 0h When set, RTC RAM index C0h:CFh will be locked from

read/write.

3.2.1.2 Century Byte

The RTC has a century byte at CMOS location 32h. Century is stored in a single byte and the
BCD format is used for the century (for example, 20h for the year 20xx). This byte is accessed
using I/O ports 70h and 71h. The BIOS must set PMIO register 56h bit 12 to 1 to use this century
byte at CMOS location 32h.

3.2.1.3 Date Alarm

The RTC has a date alarm byte. This byte is accessed as follows:

1. Set to 1 the RTC register 0Ah, bit 4, using I/O ports 70h and 71h.

2. Write Date Alarm in BCD to register 0Dh using I/O ports 70h and 71h.

3. Clear to 0 the RTC register 0Ah bit 4 using I/O ports 70h and 71h.

Note: It is important to clear RTC register 0Ah bit 4 to zero. Otherwise, the CMOS memory may
not be accessed correctly from this point onward.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 19

3.3 BIOS RAM

The Hudson-1 has 256 bytes of BIOS RAM. Data in this RAM is preserved until RSMRST# or S5
is asserted, or until power is lost.

This RAM is accessed using index and data registers at CD4h/CD5h.

3.4 Serial IRQ

The Hudson-1 supports serial IRQ which allows a single signal to report multiple interrupt
requests. The Hudson-1 supports a message for 21 serial interrupts which include 15 IRQs,
SMI#, IOCHK#, and 4 PCI interrupts.

PM_Reg: 54h is used for setting serial IRQ.

Bits in PM_Reg:
54h Description Power-on

Default
Recommended

Value
7 1 – Enables the serial IRQ function

0 – Disables the serial IRQ function
0 1

6 1 – Active (quiet) mode
0 – Continuous mode

0 0

5:2 Total number of serial IRQs = 17 +
NumSerIrqBits
0 – 17 serial IRQs (15 IRQs, SMI#,
IOCHK#)
1 – 18 serial IRQs (15 IRQs, SMI#,
IOCHK#, INTA#)
...
15 - 32 serial IRQ's
The Hudson-1 serial IRQ can
support 15 IRQs, SMI#, IOCHK#,
INTA#, INTB#, INTC#, and INTD#.

0 0100b

1:0 Number of clocks in the start frame 0 00b

Note: BIOS should enter the continuous mode first when enabling the serial IRQ protocol so that
the Hudson-1 can generate the start frame.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 20

3.5 SubSystemID and SubSystem Vendor ID

SubSytem ID and SubSystem Vendor ID can be programmed in various functions of Hudson-1
register 2Ch. These registers are write-once registers. For example, to program a SubSytem
vendor ID of 1002h and SubSystem ID of 4341h in AC97 device 14h, function 5, use the following
assembly language sample code:

mov eax,8000A52Ch

mov dx,0CF8h

out dx,eax

mov dx,0CFCh

mov eax,43411002h

out dx,eax

3.6 System Restart after Power Fail

The way the system restarts following a power-fail/power-restore cycle depends on the setting of
PMIO register 5Bh [bits 1:0].

PMIO Register 5Bh bits[1:0] Description
00b or 10b The system will remain off until the power button is pressed.

01b The system will always restart after the power is restored.
11b At power-up the system will either restart or remain off

depending on the state of the system at power failure. If the
system was on when the power failed, the system will restart
at power-up. If the system was off when the power failed, the
system will remain off after the power is restored. Pressing
the power button is required to restart the system.

Notes on programming the PMIO register 5Bh:

1. Bits[3:0] should be used for programming. Bits[7:4] are read-only bits and reflect
the same values as bits[3:0].

2. Bit 2 is used by the hardware to save the power on/off status. This bit should not
be modified during software/BIOS programming, however, its value should be
restored (effectively setting a value of ‘1’ as will be the case after every power
up) upon every access into this register. The BIOS programmer should always
read PMIO register 5Bh, modify bit3 and bits[1:0] as required, and write back the
PMIO register 5Bh.

3. PM_Reg: 5Bh is initialized on every cold boot (G3->S5->S0 transition); however,
it is also required to restore the settings in bits [7, 5:4] to bits [3, 1:0] following
any SYS_RST# or RSMRST# assertion.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 21

3.6.1 Power Fail and Alarm Setup

The state of the machine after the power-fail/power-restore cycle is controlled by PMIO register
5Bh bits[1:0] as described above. This programming can be over-ridden for the special case
when the alarm is set. When both the alarm and the PMIO register 5Bh bit3 are set, the system
will restart after the power is restored, regardless of how register 5Bh bits [1:0] are defined.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 22

4 PCI IRQ Routing

4.1 PCI IRQ Routing Registers

The Hudson-1 uses one pair of I/O ports for PCI IRQ routing. The ports are at C00h/C01h.

Address Register Name Description
C00h PCI_Intr_Index PCI interrupt index. Selects which PCI interrupt to map

0h: INTA#
1h: INTB#
2h: INTC#
3h: INTD#
4h: INTE#
5h: INTF#
6h: INTG#
7h: INTH#
8h: Misc
9h: Misc0
Ah: Misc1
Bh: Misc2
Ch: INTA from serial irq
Dh: INTB from serial irq
Eh: INTC from serial irq
Fh: INTD from serial irq
10h: SCI
11h: SMBUS0
12h: ASF
13h: HD audio
14h: FC
15h: GEC
16h: PerMon
20h: IMC INT0
21h: IMC INT1
22h: IMC INT2
23h: IMC INT3
24h: IMC INT4
25h: IMC INT5
30h: Dev18 (USB) IntA#
31h: Dev18 (USB) IntB#
32h: Dev19 (USB) IntA#
33h: Dev19 (USB) IntB#
34h: Dev22 (USB) IntA#
35h: Dev22 (USB) IntB#
36h: Dev20 (USB) IntC#
40h: IDE pci interrupt
50h: GPPInt0
51h: GPPInt1
52h: GPPInt2
53h: GPPInt3

C01h PCI_Intr_Data 0 ~ 15 : IRQ0 to IRQ15
IRQ0, 2, 8, 13 are reserved

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 23

4.2 PCI IRQ BIOS Programming

PCI IRQs are assigned to interrupt lines using I/O ports at C00h and C01h in index/data format.
The register C00h is used as the index as written with index number 0 through 0Ch as described
in section 4.1. Register C01h is written with the interrupt number as data.

The following assembly language example assigns INTB# line to interrupt 10 (0Ah).

mov dx,0C00h ; To write to IO port C00h

mov al,02h ; Index for PCI IRQ INTB# as defined in section 4.1

out dx,al ; Index is now set for INTB#

mov dx,0C01h ; To write interrupt number 10 (0Ah)

mov al,0Ah ; Data is interrupt number 10 (0Ah)

out dx,al ; Assign IRQB# to interrupt 10

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 24

4.3 Integrated PCI Devices IRQ Routing

In the Hudson-1, AC’97 and USB require a PCI IRQ. Internally they are routed to different PCI
INT#s.

Device Reg3Dh of
PCI Device

PCI INT# Description

Bus 0:Device 14h:Function 1 02 INTB# IDE Controller*

Bus 0:Device 14h: Function 2 01 INTA# High Definition Audio

Bus 0:Device 14h: Function 5 03 INTC# USB #4 OHCI Controller

Bus 0:Device 12h:Function 0 01 INTC# USB #1 OHCI Controller #0

Bus 0:Device 12h:Function 2 02 INTB# USB #1 EHCI Controller

Bus 0:Device 13h: Function 0 01 INTC# USB #2 OHCI Controller #0

Bus 0:Device 13h: Function 2 02 INTB# USB #2 EHCI Controller

Bus 0:Device 16h: Function 0 01 INTC# USB #3 OHCI Controller #0

Bus 0:Device 16h: Function 2 02 INTB# USB #3 EHCI Controller

Bus 0:Device 11h:Function 0 01 INTD# SATA Controller #2
* This is implemented in current CIMx module reference code

4.4 PCI IRQ Routing for APIC Mode

PCI IRQ APIC Assignment
INTA# 16
INTB# 17
INTC# 18
INTD# 19
INTE# 20
INTF# 21
INTG# 22
INTH# 23

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 25

5 SMBus Programming

The Hudson-1 SMBus (System Management Bus) complies with SMBus Specification Version
2.0.

5.1 SMBus Timing

The SMBus frequency can be adjusted using different values in an 8-bit I/O register at the SMBus
base + 0Eh location.

The SMBus frequency is set as follows:

SMBus Frequency = (Primary Alink Clock)/(Count in index 0Eh * 4)

The power-up default value in register 0Eh is A0h, therefore, the default frequency is
(66MHz)/(160 * 4), or approximately 103 KHz.

The minimum SMBus frequency can be set with the value FFh in the register at index 0Eh which
yields the following: (66MHz)/(255*4) = 64.7 KHz.

5.2 SMBus Host Controller Programming

Step Descriptions Register in

SMBus I/O
Space

Comments

1 Wait until SMBus is idle. Reg00h[0] 0 – Idle
1 – Busy

2 Clear SMBus status. Reg00h[4:1] Write all 1’s to clear

3 Set SMBus command. Reg03h The command will go to SMBus device.

4 Set SMBus device address with
read/write protocol

Reg04h Bit7:1 – address
Bit0 – 1 for read, 0 for write

5 Select SMBus protocol Reg02h[4:2]

6 Do a read from Reg02 to reset
the counter if it’s going to be a
block read/write operation

Reg02h

7 Set low byte when write
command

Reg05h Byte command – It is the written data
Word command – It is the low byte data
Block command – It is block count
Others – Don’t care

8 Set high byte when write
command

Reg06h Word command – It is the high byte
data
Others – Don’t care

9 Write the data when block write Reg07h Block write – write data one by one to it
Others – Don’t care

10 Start SMBus command
execution

Reg02h[6] Write 1 to start the command

11 Wait for host not busy Reg00h[0]

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 26

12 Check status to see if there is
any error

Reg00h[4:2] With 1 in the bit, there is error

13 Read data Reg05h Byte command – It is the read data
Word command – It is the low byte data
Block command – It is block count
Others – Don’t care

14 Read data Reg06h Word command – It is the high byte
data
Others – Don’t care

15 Read the data when block write Reg07h Block read – read data one by one.
Others – Don’t care

The following flow chart illustrates the steps in programming the SMBus host controller.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 27

Fig 3: Programming the SMBus Host Controller

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 28

6 Serial ATA (SATA)

The Hudson-1 SATA controller has two main features:

1. Supports six SATA ports.

2. Supports a unique architecture that allows the user to configure the SATA
controller to work in conjunction with the IDE (PATA) controller to provide
configurations that cannot be supported with the SATA controller alone. This
feature is referred to as “Combined Mode” in this document.

In Combined Mode, the SATA controller can be configured as either AHCI mode
or RAID mode and supports up to four SATA ports. Ports 0:3 are assigned for this
configuration. The other two SATA ports will be configured as PATA ports and
function in IDE mode. Two SATA ports (port 4 and port 5) share one IDE channel
(could be either Primary or Secondary channel) from the IDE (PATA) controller.

Alternatively, the SATA controller can be configured as IDE mode supporting up
to six IDE channels. In this configuration the SATA ports will be assigned to the
Primary / Secondary channels as defined in the table below. The configuration for
six IDE ports can also be achieved in two modes simultaneously by using the
combined mode, i.e., two IDE ports can be configured to work in Legacy mode
while the other four ports can be configured to work in Native or Compatibility
mode.

SATA Port Assignment in Combined IDE Mode

Port Number Primary , Secondary ,
Master / Slave Assignment

SATA Drive Controlled by

Port 0 Primary master SATA controller

Port 1 Secondary master SATA controller

Port 2 Primary slave SATA controller

Port 3 Secondary slave SATA controller

Port 4 Primary (Secondary) master PATA controller

Port 5 Primary (Secondary) slave PATA controller

The following figure shows the various combined mode configurations.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 29

Fig 4: Combined Mode Configurations

Note: In the IDE combined mode, the Microsoft® inbox driver will control all PATA drives
showing all devices under two physical IDE controllers.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 30

6.1 Device ID

The Hudson-1 SATA will have different device IDs for different drivers as these are distrinct
devices from the driver point of view. In a non-fresh installed condition, Windows® will match the 4
IDs (vendor ID, device ID, sub-system ID and sub-vendor ID) first, and if they are matched, it will
load the driver and will not check the sub-class code. This will result in a blue screen in
Windows XP if the SATA RAID driver is loaded with the SATA controller in IDE mode, and device
ID is shared.

Device ID Device

4390 SATA in IDE mode

4391 SATA in AHCI mode with Microsoft® driver

4392 SATA in RAID mode with Promise non-Raid 5 driver

4393 SATA in RAID mode with Promise Raid 5 driver

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 31

6.2 SATA Controller Operating Modes

Whenever SATA is set to any of the IDE modes (native IDE, legacy IDE, IDE-->AHCI) and the
Combined Mode is set to OFF, only four ports (0-3) can be supported by the SATA controller,
while the other two ports (4-5) cannot be used.

When the Combined Mode is ON, ports 4, 5 will always be connected through the PATA
controller, meaning that any device connected to this port will be shown as a PATA IDE device.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 32

7 APIC Programming

With the AMD integrated chipset solution, the BIOS needs to program both the Northbridge (in
the APU) and the FCH in order to support APIC.

7.1 Northbridge APIC Enable

There are three bits in the Northbridge that the BIOS should set before enabling APIC support.

• Enable Local APIC in CPU (set bit[11] in APIC_BASE MSR(001B) register).
• Reg4C bit[1] - This bit should be set to enable. It forces the CPU request with

address 0xFECx_xxxx to the FCH.
• Reg4C bit[18] - This bit should be set to enable. It sets the Northbridge to accept

MSI with address 0xFEEx_xxxx from the FCH.

7.2 FCH APIC Enable

There are two bits in the PM_Reg that the BIOS should set before enabling APIC support.

• Reg34 bit[0] = 1 to enable the APIC function.
• Reg34 bit[1] = 1 to enable the xAPIC function. It is only valid if bit[0] is being set.

7.3 IOAPIC Base Address

The IOAPIC base address can be defined at PM_Reg: 34h bit[5-31]. The power-on default value
is FEC00000h.

Note: This register is 32-bit access only. The BIOS should not use the byte restore mechanism to
restore its value during S3 resume.

7.4 APIC IRQ Assignment

Hudson-1 has IRQ assignments under APIC mode as follows:

• IRQ0~15 – Legacy IRQ
• IRQ 16 – PCI INTA
• IRQ 17 – PCI INTB
• IRQ 18 – PCI INTC
• IRQ 19 – PCI INTD
• IRQ 20 – PCI INTE
• IRQ 21 – PCI INTF
• IRQ 22 – PCI INTG
• INT 23 – PCI INTH
• IRQ 09 – ACPI SCI

SCI is still as low-level trigger with APIC enabled.

7.5 APIC IRQ Routing

During the BIOS POST, the BIOS will do normal PCI IRQ routing through port C00h/C01h. Once

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 33

APIC is fully enabled by the operating system, routing in C00h/C01 must be all cleared to zero.

The following is a sample ASL code that may be incorporated into the BIOS:
 OperationRegion (PIRQ, SystemIO, 0xC00, 0x2)

 Field (PIRQ, ByteAcc, NoLock, Preserve) {

 PIDX, 8, // Index port

 PDAT, 8 // Data port

 }

 IndexField (PIDX, PDAT, ByteAcc, NoLock, Preserve) {

 PIRA, 8, // INT A

 PIRB, 8, // INT B

 PIRC, 8, // INT C

 PIRD, 8, // INT D

 PIRE, 8, // INT E

 PIRF, 8, // INT F

 PIRG, 8, // INT G

 PIRH, 8, // INT H

 Offset (0x10),

 PIRS, 8, // SCI

 Offset (0x13),

 HDAD, 8, // HD Audio

 Offset (0x15),

 GEC_, 8, // GEC

 Offset (0x30),

 USB1, 8, // USB1

 USB2, 8, // USB2

 USB3, 8, // USB3

 USB4, 8, // USB4

 USB5, 8, // USB5

 USB6, 8, // USB6

 USB7, 8, // USB7

 Offset (0x40),

 IDE_, 8, // IDE

 SATA, 8, // SATA

 Offset (0x50),

 GPP0, 8, // GPP0

 GPP1, 8, // GPP1

 GPP2, 8, // GPP2

 GPP3, 8, // GPP3

 }

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 34

8 UMI Bridge

The registers are accessed using an address-register/data-register mechanism. The address
register is AB_INDX [31:0], and the data register is AB_DATA [31:0].

31:30 29:17 16:2 1:0

RegSpace[1:0] Reserved Register address[16:2] Reserved

AB_INDX [31:0]

31:0
Data[31:0]

AB_DATA [31:0]

RegSpace[1:0]
 00b AXINDC Index/Data Registers. (AX_INDXC)
 01b AXINPD Index/Data Registers (AX_INDXP)
 10b Alink Express Configuration (AXCFG)
 11b Alink Bridge Configuration (ABCFG)

Definition of RegSpace[1:0]

In order to read or write a particular register, the software will write the register address and the
register space identifier to AB_INDX and then do a read or write to AB_DATA. This is analogous
to how PCI configuration reads and writes work through I/O addresses CF8h/CFCh.

The location of AB_INDX in the I/O space is defined by the abRegBaseAddr register located at
PMIO, register 0E0h. The AB_DATA register address is offset 4h from the AB_INDX address.
The address of the AB_INDX must be 8 byte aligned.

31:3 2:0
BaseAddr[31:3] Rsv

abRegBAR [31:0] at PMIO, Register 0E0h

AXCFG and ABCFG registers are accessed indirectly through AB_INDX/AB_DATA. To read or
write a particular register through AB_INDX/AB_DATA, the register address and the register
space identifier is first written to AB_INDX. The specified register is then accessed by doing a
read or write to AB_DATA (see the example below).

Access to AXINDC and AXINDP registers requires a second level of indirection. Registers in
these spaces are addressed through the following indirection registers: AX_INDEXC/AX_DATAC
and AX_INDEXP/AX_DATAP.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 35

Register Indirect Address

AX_INDXC 30h

AX_DATAC 34h

AX_INDXP 38h

AX_DATAP 3Ch

Example: To write to register 21h in the INDXC space with a data of 00, the following steps are
required:

1. Out 30h to AB_INDX. This will prepare to write register from INDXC

2. Out 21h to AB_DATA. This will set register 21h of INDXC

3. Out 34h to AB_INDX. This will prepare to write data to register defined in
steps 1 and 2 above

4. Out 00 to AB_DATA. This will write the data to the register defined n steps 1
and 2 above.

8.1 Programming Procedure

Indirect access is required to access both UMI Configuration and UMI Bridge Configuration
register space. The programming procedure is as follows:

Write:

1. Set the UMI bridge register access address. This address is set at PMIO,
register 0E0h. This is an I/O address and needs to be set only once after
power-up. The I/O address must be on an 8-byte boundary (i.e., 3 LS bits
must be zeroes).

Example: To set CD8h as an UMI bridge register access address:

 mov dx,0CD6h ;

 mov al,0E0h ; Index

 out dx,al

 mov dx,0CD7h ;

 mov al,0D8h ; Data

 out dx,al

 mov dx,0CD6h ;

 mov al,0E1h ; Index

 out dx,al

 mov dx,0CD7h ;

 mov al,00Ch ; Data

 out dx,al

Note: Although the 32-bit I/O address is set for the UMI bridge (e.g.,

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 36

00000CD8h), the bridge may be accessed by a 16-bit address (i.e., 0CD8h). The
MS word is set to 00 by default (see the example below).

2. Write the register address in the AB_INDX.

Example: To write to the UMI Bridge Configuration register space at 90h:

 mov dx, 0CD8h ; I/O address index assigned to A-Link

 mov eax, 0C0000090h ; Bits[31:30] = 11 for A-Link Bridge
register
 ; space

 out dx,eax ; Register index is set

 mov dx, 0CDCh ; I/O address for data

 mov eax,00000001h ; Power down 2 lanes to save power

 out dx,eax

Read:

Use a similar indirect procedure to read out the register value inside AB and BIF.

8.2 UMI Configuration DMA Access

To enable UMI Configuration DMA access, a specific register space needs to be configured first.
This register is in the UMI register space that refers to port-specific configuration registers (see
section 8 above for a description of the AB_INDX register). When configuring the register, bit2 of
byte 4 needs to be set to “1” to enable the DMA access.

Follow these steps to initialize UMI configuration DMA access (this initialization has to be
performed during S3 wakeup also):

1. Issue an I/O write to AB_INDX. The write data's bit [31:29] should be 100b
(binary). The register to be written is in the port-specific configuration register
space, and bit [16:0] should be 0x4 (hex).

2. Issue an I/O write to AB_Data. This write data's bits[31:0] should be 0x4h (i.e.,
32'b0000_0000_0000_0100 binary).

 mov dx, 0CD8h ; ALINK_ACCESS_INDEX

 in eax, dx

 and eax, NOT (0C001FFFFh)

 or eax, 080000004h

 out dx, eax

 mov dx, 0CDCh ; ALINK_ACCESS_DATA

 mov eax, 04h

 out dx, eax

;Write AB_INDX 0x30

;Write AB_DATA 0x21

;Write AB_INDX 0x34

;Write AB_DATA 0x00

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 37

 mov dx, 0CD8h ; ALINK_ACCESS_INDEX

 mov eax, 30h

 out dx, eax

 mov dx, 0CDCh ; ALINK_ACCESS_DATA

 mov eax, 21h

 out dx, eax

 mov dx, 0CD8h ; ALINK_ACCESS_INDEX

 mov eax, 34h

 out dx, eax

 mov dx, 0CDCh ; ALINK_ACCESS_DATA

 mov eax, 00h

 out dx, eax

8.3 Enabling Non-Posted Memory Write

The register index 10h of AXINDC bit9 should be set to 1.

 mov dx,AB_INDX ; AB index register

 mov eax,30h ; Address of AXINDC

 out dx,eax ; Set register address

 mov dx,AB_DATA ; To write register address

 mov eax,10h ; Write register address

 out dx,eax

 mov dx,AB_INDX

 mov eax,34h ; To write data portion of the AXINDC

 out dx,eax

 mov dx,AB_DATA

 in eax,dx ; Read the current data

 or al,200h ; Set bit 9

 out dx,eax ; Write data back.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 38

9 CIR Support

The integrated micro controller (IMC) in Hudson-1 provides the interface to connect two IR
receivers and two IR transmitters. The two IR receivers are for Learning IR Data and Receiving
IR Data and the two IR transmitters are for Transmitting IR Data. The controller has the ability to
support wake from S5, S4, S3 or S1 states and is capable of storing and returning the wake
identification code to the IR driver.

BIOS Requirements:
1. IMC firmware / CIMx program IMC, CIR base address and IRQ assignment of the IR.
2. CIMx initializes the ASL code with the exception of CIR pin configuration information.
3. Platform BIOS programs the CIR pin configuration in IMC logical Device 5.
4. Platform BIOS then add the information to the ASL code to declare the hardware

capabilities (transmitter, receiver, jack, etc.) to the IR driver.

Driver Requirements:
The CIR driver is available on the AMD NDA site. This driver should be installed for enabling the
function of the CIR.

9.1 Southbridge CIR

9.1.1 Host and CIR Communication

The platform BIOS needs to configure the CIR pins based on the platform requirement. Platform
BIOS will program registers in logical device # 5 of the southbridge.

9.1.2 Logical Device Number 5 Registers

The CIR is designed as a logical device in the southbridge that complies with the Plug and Play
ISA Specification. The logical device number of the CIR device is 5 and it contains the following
registers that need to be updated by the Platform BIOS.

IRC_PIN_CONTROL (INDEX:0xAB): Port to write data to the FIFO.
FieldName Bits Default Type Description
IR_OpenDrain 4 0 R/W Transmitter output pin type.

0: TX are push-pull driver.
1: TX are open-drain.

IR_Tx1 3 0 R/W 0: TX1 emitter output pin held high
1: TX1 pin outputs emitter signal

IR_Tx0 2 0 R/W 0: TX0 emitter output pin held high
1: TX0 pin outputs emitter signal

IR_Enable 1:0 0 R/W 00: IR Function will not control the IR Rx and Tx
pins.
01: IR Function controls the RX and TX0 pins.
10: IR Function controls the RX and TX1 pins.
11: IR Function controls the RX and both TX pins.

IR_OpenDrain (bit 4) - Program this bit to 1 or 0 depending on the how it is connected to the CIR
emitter.

IR_Tx1 and IR_Tx0 (bits 2 and 3) - Program these bits to ‘1’ to enable the transmit signal for the

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 39

corresponding Tx that is used on the platform.

IR_Enable (bits 0 and 1]) - Program these bits to ‘1’ to enable the transmit signal for the
corresponding Tx that is used on the platform.

IRC_CONFIG1 (INDEX:0xA3): IR Controller Configuration Register 1
FieldName Bits Default Type Description
IR_TXINV 1 0 Read/Write Invert the Transmit signal
IR_RXINV 0 0 Read/Write Invert the Received signal

IR TX or RX signal can be inverted by programming bit 1:0. Depending on the CIR emitter
requirements these bits can be programmed accordingly.

Note that the IMC firmware will set IMC_PortActive to 0x6E once the IMC is enabled because the
power-up default value of 0x2E is usually used by most Super IO controllers. Therefore, an I/O
conflict may occur when IMC and the Super IO controller are used together. If the value picked by
the IMC firmware is still not suitable for the design, platform BIOS developers can change it by
programming the IMC_PortActive field of the Southbridge LPC ISA bridge PCI configuration
register A4h to the desired address.

LPC ISA Bridge (Device 20, Function 3):

IMC_PortAddress - R/W - 16 bits - [PCI_Reg: A4h]

Field Name Bits Default Description

IMC_PortActive 0 1b When set to 1, LPC can decode the address specified
in IMC_PortAddress, otherwise LPC ignores it.

Addr15_1 15:1 0017h When Addr15_1 is non-zero, and if an IO cycle from
host has address[15:1] = Addr15_1, the cycle will be
routed to IMC instead of to LPC bus. By default,
address[15:0] = 002Eh or 002Fh will be routed.

Read-only to host if IMC_PortHostAccessEn = 0.

Since the activation of Logical Device Number 5 and the address assignment of the registers are
handled by CIMx during the IMC enabling process, the platform software needs only to program
the value of the above registers to enable the CIR (refer to the Get_IMC_MsgReg_Base_Addr
function in the sample code below).

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 40

; Find the IMC Config port address to access the configuration registers
; Input: None
; Output: DX = IMC Config port address

Get_IMC_Config_Port:
 mov eax, 8000A3A4h ; LPC bridge configuration register A4h
 mov dx, 0CF8h
 out dx, eax
 mov dx, 0CFCh
 in eax, dx ; Read IMC_PortAddress register
 and ax, 0FEh ; Mask out bit 0 to retain LPCCfg_A4[15:1]
 mov dx, ax ; DX = Index Port address
 ret

; Find CIR base address
; Input: None
; Output: DX = CIRregister base address

Get_IMC_CIR_Base_Addr:
 call Get_IMC_Config_Port ; Get IMC Config port address

 mov al, 5Ah ; Enter configuration state
 out dx, al ; Write Index Port

 mov al, 07h ; Select Logical Device Number register
 out dx, al ;
 inc dx ; DX = Data Port
 mov al, 05h ; Select logical device 5, CIR Registers
 out dx, al
 dec dx ; DX = Index Port

 mov al, 60h ; Read high byte of CIR register base address
 out dx, al
 inc dx ; DX = Data Port
 in al, dx
 mov bh, al ; BX = CIR base address bit[15:8]
 dec dx ; DX = Index Port

 mov al, 61h ; Read low byte of CIR register base address
 out dx, al
 inc dx ; DX = Data Port
 in al, dx
 mov bl, al ; BX = CIR base address bit[7:0]
 dec dx ; DX = Index Port

 mov al, 0A5h ; Exit configuration state
 out dx, al
 mov dx, bx ; DX = CIR register base address[15:0]
 ret

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 41

9.1.3 Sample Code to Read and Write CIR Registers

9.1.4 Sample Code to Enable Tx0 and Program it as Push Pull Driver

mov al, ABh ; AL = CIR pin config register index value
 call Read_CIRReg

mov ah, 05h ; AH = value to write
 and al, E0h ; clear bits 4:0
 or al, ah ; ah = contents to write back
 mov al, ABh ; AL = CIR register index value
 call Write_CIRReg

; Write an 8-bit value to a CIR register
; Input: AH = value to write
; AL = message register index value
; Output: None

Write_CIRReg:
 push ax ; Save input parameters
 call Get_IMC_CIR_Base_Addr; Get IMC CIR register base address
 pop ax ; Restore input parameters
out dx, al ; Write index to CIR index register
 mov al, ah
 inc dx ; DX = message data register
 out dx, al ; write data to message data register
 dec dx
 ret

; Read from a CIR register
; Input: AL = message register index value
; Output: AL = value read

Read_CIRReg:
 push ax ; Save input parameters
 call Get_IMC_CIR_Base_Addr; Get IMC CIR register base address
 pop ax ; Restore input parameters

 out dx, al ; Write index to message index register
 inc dx ; DX = message data register
 in al, dx ; AL = value read from message register requested
 ret

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 42

9.1.5 Sample ASL Code for CIR

//Hudson-1 Embedded Controller IR device
Device(ECIR)
{
 Name(_HID,EISAID("AMDC001"))

 Method(_STA)
 {
 Store(0x00, Local1)
 If (LEqual(OSTY, 6)) //We need to use IR only for Vista
 {
 Store(STA(0x05), Local1)
 }
 Return(Local1)
 }

 Method(_CRS)
 {
 Name(RSRC,ResourceTemplate()
 {
 IO(Decode16,0x00,0x00,0x08,0x08)
 IRQNoFlags() {}
 })

 CreateByteField(RSRC,0x02,IO1) //IO port low
 CreateByteField(RSRC,0x03,IO2) //IO port high
 CreateByteField(RSRC,0x04,IO3) //IO port low
 CreateByteField(RSRC,0x05,IO4) //IO port high
 CreateWordField(RSRC,0x09,IRQV) //IRQ mask

 Acquire(ECMU, 5000)
 CFG(0x05)

 If (ACT)
 {
 Store(IOBL,IO1)
 Store(IOBH,IO2)
 Store(IOBL,IO3)
 Store(IOBH,IO4)
 Store(0x01,LOCAL0)
 ShiftLeft(LOCAL0,INT,IRQV)
 }

 XCFG()
 Release(ECMU)
 Return(RSRC)
 } // Method(_CRS)

Name(_PRS,ResourceTemplate()
 {
 StartDependentFn(0,0)
 {
 IO(Decode16,0x550,0x550,0x1,0x8)
 IRQ(Edge,ActiveHigh,Shared) {0x5}
 }
 StartDependentFnNoPri()
 {
 IO(Decode16,0x650,0x650,0x1,0x8)
 IRQ(Edge,ActiveHigh,Shared) {0x5}
 }
 StartDependentFnNoPri()
 {
 IO(Decode16,0x550,0x550,0x1,0x8)
 IRQ(Edge,ActiveHigh,Shared) {0x3}

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 43

 }
 StartDependentFnNoPri()
 {
 IO(Decode16,0x650,0x650,0x1,0x8)
 IRQ(Edge,ActiveHigh,Shared) {0x3}
 }

 EndDependentFn()
 })

 Method(_SRS,1)
 {
 //Arg0 = PnP Resource String to set
 CreateByteField(Arg0,0x02,IO1)
 CreateByteField(Arg0,0x03,IO2)
 CreateWordField(Arg0,0x09,IRQV)

 Acquire(ECMU, 5000)
 CFG(0x05)

 Store(IO1,IOBL)
 Store(IO2,IOBH)
 FindSetRightBit(IRQV,Local0)
 Subtract(Local0,1,INT)
 Store(0x01,ACT)

 XCFG()

 Release(ECMU)
 } // Method(_SRS)

 Method(_PRW, 0) { Return(GPRW(0x17, 4)) } // can wakeup from S4 state

 Method(_PSW, 1)
 {
 If(Arg0)
 {
 Store(1, IRWF)
 }
 Else
 {
 Store(0, IRWF)
 }
 }

 //AMD specific control method to return board related IR info
 Method(IRCF, 2)
 {

 //Bit 0 - 7
 //Version number of silicon (Supports up to 16 version numbers).
 //For example
 //0x39 for A11, 0x3A for A12

 //Bit 8 v 10(Supports up to 7 transmitters. (AMD IR device supports 2 transmitters)
 //Number of TX ports
 //For example
 //0 for no emitters, 1 for one emitter

 //Bit 11 v 12(Supports up to 3 receivers. (AMD IR device supports 2 receivers)
 //Number of receivers
 //For example
 //0 for no receivers, 1 for one receiver

 //Bit 13 v 15
 //Receiver number for Learn.
 //0 for no learning receiver.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 44

 //Otherwise it is the mask value of learning receiver (3 bits to support maximum 3
receivers).

 //bit16 to represent the presence of receiver LED on the hardware

 Name(CONN, 0)
 If (LEqual(ARG0, 0x01))
 { //Query platform configuration
 Or(\RVID, CONN, CONN)
 Or(0x13200, CONN, CONN)
 Return(CONN)
 }
 If (LEqual(ARG0, 0x02))
 {
 //Emitter Jack connection info
 ShiftLeft(\GP64, 1, CONN)
 Or(\GP51, CONN, CONN)
 Return(CONN)
 }
 If (LEqual(ARG0, 0x03))
 { //Flash LED function
 If (LEqual(ARG1, 0x00))
 { //Don't flash the LED
 Store(1, \G31O)
 }
 else
 { //Flash the LED
 Store(0, \G31O)
 Sleep(100)
 Store(1, \G31O)
 }
 }
 If (LEqual(ARG0, 0x04))
 { //Set EC-ACPI Interrupt Config
 If (LEqual(ARG1, 0x00))
 {
 //Set as edge triggered
 Store(0, \ACIR)
 }
 else
 {
 //Set as level triggered
 Store(1, \ACIR)
 }
 }
 If (LOr (LEqual(ARG0, 0x00),LGreater(ARG0, 0x05)))
 {
 Store(0xFFFFFFFF, CONN) //Return error is invalid function
 }
 Return(CONN)
 }//_IRS
 } //Device(ECIR)

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 45

10 SMI Programming

10.1 Workaround for SMI Command Port Status Byte

This workaround is required as per erratum # 20 in the Hudson-1 FCH Family Product Errata
(PID # 47792).

If an IMC-enabled platform is using the SMI command port base +1 with byte (8 bit) access, all
such access should be changed to use word (16 bit) access starting at the SMI command port
base address.

For platforms that use the SMI command port status register, typically software will write to the
command port status byte (base +1) and then write to the command port base consecutively to
set up the software SMI. The following code example shows how to use word access instead of
byte access:

//
// Issue command port SMI
//
if (*ArgumentBufferSize == 2) {
 //WriteIO (ACPI_SMI_DATA_PORT, AccWidthUint8, &bData);
 wValue = bIndex + (bData << 8);
 WriteIO (ACPI_SMI_CMD_PORT, AccWidthUint16, &wValue);
} else {
 WriteIO (ACPI_SMI_CMD_PORT, AccWidthUint8, &bIndex);
}

Reading from the command port status register will also require using word access:

Get SMI.
VOID
SwGetContext(
 IN DATABASE_RECORD *Record,
 OUT SMM_CONTEXT *Context
)
{
 EFI_STATUS Status;
 UINT8 ApmCnt;

 Status = mSmst->SmmIo.Io.Read (
 &mSmst->SmmIo,
 SMM_IO_UINT16,
 SmiCmdPort,
 0,
 &ApmCnt
);
 ASSERT_EFI_ERROR (Status);

 Context->Sw.SwSmiInputValue = ApmCnt;

}

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 46

Note: The above examples assume that the setting up of SMI is done by writing to the Command
port and Command port+1 consecutively when setting up a software SMI. If the Status byte is
read independently, then care must be taken to disable the SMI command port before doing a
word access to command port base address in order to prevent an SMI interrupt from being
generated. The SMI command port can be enabled after the write is completed. The
SMIControl75 field of the SmiControl4 register (bit [23:22] of SMI_Reg: B0h) is used to
enable/disable SMI.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 47

11 Legacy BIOS Implementation for Chipset Integration
Module Extensive (Hudson-1 CIMx)

11.1 Introduction

CIMx-Hudson-1 introduces a similar interface and distribution model as the CIMx-SB7xx
to help quickly integrate Hudson-1 FCH family support in customer products. It differs
from the CIMx-SB7xx by using a new Push High interface which is the same as the AMD
AGESATM module used for the V5 series model. Since the APU/FCH use the same
interface file, it helps to reduce the coding size of the interface file of the IBV (i.e.,
individual BIOS company or BIOS vendor).

11.2 CIMx Interface Calls Environment

Prior to calling any CIMx interface, the following is required:

1. Place CPU into 32-bit protected mode.
2. Set CS as 32-bit code segment with Base/Limit – 0x00000000/0xffffffff.
3. Set DS/ES/SS as 32-bit data segment with Base/Limit – 0x00000000/0xffffffff.

11.3 Interface Definition

All interface calls to CIMx-Hudson-1 binary are C-like calls to the Entry Point of the binary
image.

 void (*ImageEntryPointPtr)(void* Config)

11.3.1 FCH Power-On/Reset Initialization

Upon system power-on, or cold reset, there is minimal initialization required such as SMBus base
address programming and enabling the legacy IO to bring the system to a working state. The
BIOS should call this entry to B1 module at a very early stage during power on initialization.

CIMx has assumed a set of default values for all the build parameters such as BIOS size, SMBus
base address, power management base addresses, etc. In order to use your own set of values
for these configurable options, define the buildparameters structure and give the 32-bit physical
pointer as input to the CIMx module. If the pointer is NULL or set to all 1, then the CIMx module
uses the default parameters. Also the BIOS developer has the flexibility of changing the oem.h
file to redefine the values, however, in this case, the CIMx module needs to be rebuilt for the new
values to be included in the binary.

Parameters

Please refer to Hudson-1 CIMx implementation note.chm for further description.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 48

11.3.2 FCH BIOS POST Initialization

Hudson-1 BIOS POST initialization is divided into 3 stages; “Before PCI Enumeration”, “After PCI
Enumeration” and “Late POST Initialization”. Each of these needs the same inputs except that
the function ID must be set up properly. The “Before PCI Enumeration” routine should be called
before PCI devices are enumerated and resources are assigned. It is recommended to call the
“Before PCI Enumeration” routine at very early POST after memory detection. The “After PCI
Enumeration” routine should be called after the resources are assigned to the PCI devices since
this routine initializes MMIO spaces of some of the devices. The “Late POST Initialization” routine
should be called at the end of BIOS POST just before giving control to the operating system.

Parameters

Please refer to Hudson-1 CIMx implementation note.chm for further description.

11.3.3 S3 Resume Initialization

CIMx will do the necessary programming to prepare the FCH to resume from the sleep state. It is
highly recommended to use the same copy of AMDSBCFG for BIOS post and S3 resume
initialization. This will allow CIMx to exchange data between interface calls if necessary. There
are two calls necessary during S3 resume time to restore the FCH to the previous state: The first
call should be done before PCI devices configuration spaces are restored and the other call
should be done after PCI devices configuration spaces are restored.

Parameters

Please refer to Hudson-1 CIMx implementation note.chm for further description.

11.3.4 Callback Interface Definition

Callback functions are supported in the CIMx module to enable the OEMs to hook at a specific
location in the CIMx module. This will allow OEMs to do some specific initialization in between the
CIMx functions. OEMs who require some callbacks can request AMD to add this call in CIMx.

Parameters

Please refer to Hudson-1 CIMx implementation note.chm for further description.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 49

12 UEFI BIOS Implementation for Chipset Integration
Module Extensive (Hudson-1 CIMx)

12.1 Introduction

The platform interface and configuration driver (AMD platform interface) is the interface between
the UEFI core and the AMD chipset driver. It has two purposes: (1) to allow the platform to
configure the chipset driver behavior (device enabling/disabling, internal configuration change),
and (2) to provide a means to the platform to abstract some platform specific behavior (GPIO
toggling, hardware location, hardware support, etc.) and allow the driver to request interaction
and information from the platform. This driver is written both by AMD and the UEFI core provider.

The goal is to provide a driver that can be added to any code base with the minimum amount of
work and modification. Most calls are done through the entry points or callbacks and all the
platform code is centralized in one location.

The driver is built using the TianoCore tool chain (EDK) and verified in a variety of platform BIOS.
The EDK build files will be provided as part of the driver package to make it easy to integrate it in
any codebase.

12.2 CIMx Interface Calls Environment

The AMD chipset driver is composed of four parts:

1. PEI driver
2. DXE driver
3. AMD UEFI driver library
4. Core chipset driver

The first three are unique to the AMD UEFI chipset driver. The core chipset driver is shared with
the legacy driver and is not covered by this document. It is integrated in the UEFI driver as a
library since both PEI and DXE need to access its functions.

12.2.1 FCH PEI Module
The FCH is controlled by the AmdSbPei PEI. This PEI is responsible for the power-on
initialization of the FCH including recovery support, boot-mode update, SMBus control and the
production of a reset service.

The boot mode is only updated if the boot mode seen by the FCH has a higher priority (as
defined in the PI specification) than the current mode. Since the boot mode might not be final
when the FCH PEIm is entered, a function is provided in AMD_PEI_FCH_INIT_PPI to allow the
platform to query the module for the FCH boot mode. The resulting configuration is used by the
FCH PEI module for power-on initialization and then passed to DXE through a HOB.

©2012 Advanced Micro Devices, Inc.

AMD A45/A50M/A55E BIOS Developer’s Guide Page 50

Parameters

Please refer to Hudson-1 CIMx implementation note.chm for further description.

12.2.2 FCH DXE Driver

The FCH is initialized in three phases:

1. Before PCI initialization
2. After PCI initialization
3. Late FCH Init

The first phase is done on entry to the AmdSbDxe driver and this is assumed to happen before
the PCI sub-system is initialized. This allows the driver to perform some early initialization on
peripheral controllers before they are discovered by the core and publish the protocols supported
by the FCH. The runtime FCH driver to support is also initialized and the necessary callbacks for
the subsequent phases are registered.

The second phase occurs once PCI has been initialized by the core. It is performed upon the first
installation of the PciIo protocol (EFI_PCI_IO_PROTOCOL_GUID) by the core, through a callback
on the protocol installation with a TPL of TPL_NOTIFY. At that point the peripheral controllers
have their resources assigned and the FCH driver can start using them. Based on platform
hardware, procedures such as USB MMIO assignment, SATA port enumeration and audio
configuration are performed.

The final phase occurs when the system is ready to boot and the ready to boot
(EFI_EVENT_SIGNAL_READY_TO_BOOT) event has been signaled. A callback on the event with
a TPL of TPL_NOTIFY is used to initiate this phase. The final FCH configuration, including HPET
and SATA, is performed at this point. The FCH driver also publishes an “end of FCH init” protocol
at the end of its initialization to allow other drivers to trigger on it.

Parameters

Please refer to Hudson-1 CIMx implementation note.chm for further description.

	1 Introduction
	1.1 About this Manual
	1.2 Block Diagram
	1.3 Internal PCI Devices

	2 Hudson-1 Programming Architecture
	2.1 PCI Devices and Functions
	2.2 I/O Map
	2.2.1 Fixed I/O Address Ranges
	2.2.2 Variable I/O Decode Ranges

	2.3 Memory Map
	2.3.1 MMIO Programming for Legacy Devices

	3 Hudson-1 Early-POST Initialization
	3.1 512K/1M ROM Enable
	3.1.1 PCI ROM
	3.1.2 LPC ROM
	3.1.3 LPC ROM Read/Write Protect
	3.1.4 SPI ROM Controller

	3.2 Real Time Clock (RTC)
	3.2.1 RTC Access

	3.3 BIOS RAM
	3.4 Serial IRQ
	3.5 SubSystemID and SubSystem Vendor ID
	3.6 System Restart after Power Fail
	3.6.1 Power Fail and Alarm Setup

	4 PCI IRQ Routing
	4.1 PCI IRQ Routing Registers
	4.2 PCI IRQ BIOS Programming
	4.3 Integrated PCI Devices IRQ Routing
	4.4 PCI IRQ Routing for APIC Mode

	5 SMBus Programming
	5.1 SMBus Timing
	5.2 SMBus Host Controller Programming

	6 Serial ATA (SATA)
	6.1 Device ID
	6.2 SATA Controller Operating Modes

	7 APIC Programming
	7.1 Northbridge APIC Enable
	7.2 FCH APIC Enable
	7.3 IOAPIC Base Address
	7.4 APIC IRQ Assignment
	7.5 APIC IRQ Routing

	8 UMI Bridge
	8.1 Programming Procedure
	8.2 UMI Configuration DMA Access
	8.3 Enabling Non-Posted Memory Write

	9 CIR Support
	9.1 Southbridge CIR
	9.1.1 Host and CIR Communication
	9.1.2 Logical Device Number 5 Registers
	9.1.3 Sample Code to Read and Write CIR Registers
	9.1.4 Sample Code to Enable Tx0 and Program it as Push Pull Driver
	9.1.5 Sample ASL Code for CIR

	10 SMI Programming
	10.1 Workaround for SMI Command Port Status Byte

	11 Legacy BIOS Implementation for Chipset Integration Module Extensive (Hudson-1 CIMx)
	11.1 Introduction
	11.2 CIMx Interface Calls Environment
	11.3 Interface Definition
	FCH Power-On/Reset Initialization
	11.3.2 FCH BIOS POST Initialization
	S3 Resume Initialization
	Callback Interface Definition

	12 UEFI BIOS Implementation for Chipset Integration Module Extensive (Hudson-1 CIMx)
	12.1 Introduction
	12.2 CIMx Interface Calls Environment
	12.2.1 FCH PEI Module
	12.2.2 FCH DXE Driver

